Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis

Proteomics Clin Appl. 2009 Jun;3(6):743-53. doi: 10.1002/prca.200800198.

Abstract

Human 14-3-3 proteins have isoform-specific expression and functions in different kinds of normal or tumor cells and tissues. However, the expression profiling of 14-3-3 proteins and isoform-specific biological functions are unclear in human glioma so far. In our study, the expression levels and characterization of 14-3-3 isoforms in human glioma tissues were investigated by a sensitive, accurate stable isotope labeling with amino acids in cell culture-based quantitative proteomic strategy. As a result, except unexpressed 14-3-3σ, the other six isoforms, with different expression levels, were existed in glioma tissues and para-cancerous brain tissues (PBTs). 14-3-3β and η were upregulated, whereas 14-3-3ζ was downregulated in glioma tissues compared with that in PBTs. And the other three isoforms 14-3-3ε, θ, and γ had similar expression levels in human glioma tissues and PBTs. Western blot and immunohistochemistry analysis were both consistent with the quantitative proteomic data. The loss of expression of 14-3-3σ was further discovered due to DNA high methylation in its coding region in glioma by methylation-specific PCR analysis. These results indicated that the four isoforms, including 14-3-3β, η, ζ, and σ, may play important roles in tumorigenesis of human glioma, which is probably used as potential biomarkers for diagnosis and targets for treatment of human gliomas in future.