Elevated haptoglobin level of cerebrospinal fluid in Guillain-Barré syndrome revealed by proteomics analysis

Proteomics Clin Appl. 2007 May;1(5):467-75. doi: 10.1002/prca.200600949. Epub 2007 Apr 19.

Abstract

Guillain-Barré Syndrome (GBS) is a rare autoimmune inflammatory polyneuropathy with a high risk of respiratory failure and unclear pathogenesis. Currently, there are no valid biomarkers for diagnosis of GBS. We used 2-DE and MS to analyze the protein profiles of five pairs of cerebrospinal fluid (CSF) samples of the GBS patients and the patient controls. Three proteins (orosomucoid, haptoglobin and apolipoprotein A-IV) were up-regulated, and two proteins (prostaglandin D2 synthase and transthyretin) were down-regulated in the CSF of the GBS patients. The CSF haptoglobin level, quantified by enzyme-linked immunosorbent assay, was significantly higher in the GBS patients (12.44 ± 2.70 μg/mL) compared to the chronic inflammatory demyelinating polyradiculoneuropathy (2.82 ± 0.83 μg/mL), viral meningitis (3.57 ± 0.97 μg/mL) and control patients (1.44 ± 0.35 μg/mL, p<0.05). This study indicated that protein profile analysis using a combination of 2-DE and MS provides an effective strategy for elucidating the pathogenesis and identifying potential CSF biomarkers for GBS. The raised intrathecal synthesis of haptoglobin specifically only in GBS patients, but not in patients with other neurological diseases examined, provides evidence of central nervous system involvement in GBS, and may be used as a potential diagnostic marker for GBS.