We screened a HIT (hamster insulin-secreting tumor) cell cDNA library constructed in lambda gt11 with a Go-specific oligonucleotide probe and isolated six recombinant phages. The inserts of these phages encoded two forms of alpha o, called here alpha o1 and alpha o2. The deduced amino acid sequence of alpha o1 is identical in all of its 354 amino acids to that reported previously for rat and bovine alpha o; that of alpha o2, also of 354 amino acids, is identical to alpha o1 up to and including amino acid 248 and differs thereafter in 26 amino acids. At the nucleotide level, alpha o1 and alpha o2 are identical up to and including the second base of the codon that specifies amino acid 243 and differs thereafter in 88 nucleotides of the remaining open reading frame and has no similarity to alpha o1 in its 3'-untranslated region. We propose that alpha o1 and alpha o2 result as a consequence of alternative splicing of a single alpha o transcript. Northern analysis with specifically designed oligonucleotides indicates that both forms of alpha o are expressed in normal tissues, e.g. brain. After in vitro transcription and translation, the peptides encoded in the alpha o1 and alpha o2 cDNAs could be ADP-ribosylated by pertussis toxin in the presence of added beta gamma dimers. The count of distinct G proteins keeps increasing.