miRNAs got rhythm

Life Sci. 2011 Feb 28;88(9-10):373-83. doi: 10.1016/j.lfs.2010.11.022. Epub 2010 Dec 3.

Abstract

Despite significant advances in treatments, cardiovascular disease (CVD) remains the leading cause of human morbidity and mortality in developed countries. The development of novel and efficient treatment strategies requires an understanding of the basic molecular mechanisms underlying cardiac function. MicroRNAs (miRNAs) are a family of small nonprotein-coding RNAs that have emerged as important regulators in cardiac and vascular developmental and pathological processes, including cardiac arrhythmia, fibrosis, hypertrophy and ischemia, heart failure and vascular atherosclerosis. The miRNA acts as an adaptor for the miRNA-induced silencing complex (miRISC) to specifically recognize and regulate particular mRNAs. Mature miRNAs recognize their target mRNAs by base-pairing interactions between nucleotides 2 and 8 of the miRNA (the seed region) and complementary nucleotides in the 3'-untranslated region (3'-UTR) of mRNAs and miRISCs subsequently inhibit gene expression by targeting mRNAs for translational repression or cleavage. In this review we summarize the basic mechanisms of action of miRNAs as they are related to cardiac arrhythmia and address the potential for miRNAs to be therapeutically manipulated in the treatment of arrhythmias.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / metabolism*
  • Humans
  • MicroRNAs / physiology*
  • Myocardium / metabolism
  • RNA Interference / physiology
  • RNA, Messenger / metabolism
  • RNA-Induced Silencing Complex / physiology

Substances

  • MicroRNAs
  • RNA, Messenger
  • RNA-Induced Silencing Complex