The Porcine SNP database has a huge number of SNPs, but these SNPs are mostly found by computer data-mining procedures and have not been well characterized. We re-sequenced 1,439 porcine public SNPs from four commercial pig breeds and one Korean domestic breed (Korean Native pig, KNP) by using two DNA pools from eight unrelated animals in each breed. These SNPs were from 419 protein-coding genes covering the 18 autosomes, and the re-sequencing in breeds confirmed 690 public SNPs (47.9%) and 226 novel mutations (173 SNPs and 53 insertions/deletions). Thus, totally, 916 variations were found from our study. Of the 916 variations, 148 SNPs (16.2%) were found across all the five breeds, and 199 SNPs (21.7%) were breed specific polymorphisms. According to the SNP locations in the gene sequences, these 916 variations were categorized into 802 non-coding SNPs (785 in intron, 17 in 3'-UTR) and 114 coding SNPs (86 synonymous SNPs, 28 non-synonymous SNPs). The nucleotide substitution analyses for these SNPs revealed that 70.2% were from transitions, 20.0% from transversions, and the remaining 5.79% were deletions or insertions. Subsequently, we genotyped 261 SNPs from 180 genes in an experimental KNP × Landrace F2 cross by the Sequenom MassARRAY system. A total of 33 traits including growth, carcass composition and meat quality were analyzed for the phenotypic association tests using the 132 SNPs in 108 genes with minor allele frequency (MAF)>0.2. The association results showed that five marker-trait combinations were significant at the 5% experiment-wise level (ADCK4 for rear leg, MYH3 for rear leg, Hunter B, Loin weight and Shearforce) and four at the 10% experiment-wise level (DHX38 for average daily gain at live weight, LGALS9 for crude lipid, NGEF for front leg and LIFR for pH at 24 h). In addition, 49 SNPs in 44 genes showing significant association with the traits were detected at the 1% comparison-wise level. A large number of genes that function as enzymes, transcription factors or signalling molecules were considered as genetic markers for pig growth (RNF103, TSPAN31, DHX38, ABCF1, ABCC10, SCD5, KIAA0999 and FKBP10), muscling (HSPA5, PTPRM, NUP88, ADCK4, PLOD1, DLX1 and GRM8), fatness (PTGIS, IDH3B, RYR2 and NOL4) and meat quality traits (DUSP4, LIFR, NGEF, EWSR1, ACTN2, PLXND1, DLX3, LGALS9, ENO3, EPRS, TRIM29, EHMT2, RBM42, SESN2 and RAB4B). The SNPs or genes reported here may be beneficial to future marker assisted selection breeding in pigs.