We have described a protocol for performing high-throughput immunofluorescence microscopy on microarrays of yeast cells. This approach employs immunostaining of spheroplasted yeast cells printed as high-density cell microarrays, followed by imaging using automated microscopy. A yeast spheroplast microarray can contain more than 5,000 printed spots, each containing cells from a given yeast strain, and is thus suitable for genome-wide screens focusing on single cell phenotypes, such as systematic localization or co-localization studies or genetic assays for genes affecting probed targets. We demonstrate the use of yeast spheroplast microarrays to probe microtubule and spindle defects across a collection of yeast strains harboring tetracycline-down-regulatable alleles of essential genes.