Background: Various mutations in reverse-transcriptase domain (RT) of hepatitis B virus (HBV) polymerase may develop during antiviral therapy. The influence of these mutational patterns on HBV replication capacity remains to be fully clarified.
Methods: Nine clones containing complete HBV genomes were isolated from 5 patients with chronic hepatitis B who had received antiviral treatment. Viral replication capacity was measured by quantitation of HBV replicative intermediates using vector-free transfer of paired mutant and wild-type HBV genomes into human hepatoma cell lines HepG2 and Huh7. HBV pgRNA was quantitated by real-time PCR and Southern blot analysis.
Results: A real-time PCR assay with high sensitivity and small variation was developed for quantitation of HBV replicative intermediates. Compared to wild-type counterpart, mutant rtL217P produced 1.98-fold higher replicative intermediate level, and mutant rtM204I+rtL217P increased the replicative intermediate level to 1.20 fold. Other mutational patterns (rtV173M, rtA181S/V, rtM204I, rtQ215H, rtL229M, rtN238H, rtV84M+rtA181S+rtM204I, rtV84M+rtM204I, rtA181S+rtM204I, rtA181V+rtL229M, rtQ215H+rtN238H) reduced viral replication capacity to different extents.
Conclusions: The study offers a practical measurement assay and novel information for replication features of mutant strains; especially, rtL217P substitution likely represents an energetic replication-compensatory mutation.
Copyright © 2010 Elsevier B.V. All rights reserved.