Modeling of neutron induced backgrounds in x-ray framing cameras

Rev Sci Instrum. 2010 Oct;81(10):10E514. doi: 10.1063/1.3460454.

Abstract

Fast neutrons from inertial confinement fusion implosions pose a severe background to conventional multichannel plate (MCP)-based x-ray framing cameras for deuterium-tritium yields >10(13). Nuclear reactions of neutrons in photosensitive elements (charge coupled device or film) cause some of the image noise. In addition, inelastic neutron collisions in the detector and nearby components create a large gamma pulse. The background from the resulting secondary charged particles is twofold: (1) production of light through the Cherenkov effect in optical components and by excitation of the MCP phosphor and (2) direct excitation of the photosensitive elements. We give theoretical estimates of the various contributions to the overall noise and present mitigation strategies for operating in high yield environments.