The areas of the pathogenicity island (PAI) designated as 'colonization region' (CR) and 'toxicogenic region' (TR) [Lerat et al. (2009) Mol. Plant Pathol. 10, 579-585] contain genes required for virulence and phytoxin production, respectively, in Streptomyces spp. causing common scab on potatoes. The PAI was tested for genetic variability by microarray analysis in strains of S. turgidiscabies isolated from potatoes in Finland. The data revealed four types of PAI based on divergent CR and TR which occurred in different combinations. Only one PAI type was highly similar to S. scabies (strains 87.22 and ATTC49173). Using probes designed for the predicted genes of S. scabies, two gene clusters in S. scabies appeared to be similar to most strains of S. turgidiscabies and contained PAI genes corresponding to CR and TR. They were located approximately 5 Mb apart in the S. scabies genome, as compared with only 0.3 Mb in S. turgidiscabies Car8. Data from comparative genomic hybridization with probes designed for S. scabies genes and for the PAI of S. turgidiscabies were compared by multilocus cluster analysis, which revealed two strains of S. turgidiscabies that were very closely related at the whole-genome level, but contained distinctly different PAIs. The type strain of S. reticuliscabiei (DSM41804; synonymous to S. turgidiscabies) was clustered with S. turgidiscabies. Taken together, the data indicate wide genetic variability of PAIs among strains of S. turgidiscabies, and demonstrate that PAI is made up of a mosaic of regions which may undergo independent evolution.
© 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.