Background: Cell wall resistance represents the main barrier for the production of second generation biofuels. The deconstruction of lignocellulose can provide sugars for the production of fuels or other industrial products through fermentation. Understanding the biochemical basis of the recalcitrance of cell walls to digestion will allow development of more effective and cost efficient ways to produce sugars from biomass. One approach is to identify plant genes that play a role in biomass recalcitrance, using association genetics. Such an approach requires a robust and reliable high throughput (HT) assay for biomass digestibility, which can be used to screen the large numbers of samples involved in such studies.
Results: We developed a HT saccharification assay based on a robotic platform that can carry out in a 96-well plate format the enzymatic digestion and quantification of the released sugars. The handling of the biomass powder for weighing and formatting into 96 wells is performed by a robotic station, where the plant material is ground, delivered to the desired well in the plates and weighed with a precision of 0.1 mg. Once the plates are loaded, an automated liquid handling platform delivers an optional mild pretreatment (< 100°C) followed by enzymatic hydrolysis of the biomass. Aliquots from the hydrolysis are then analyzed for the release of reducing sugar equivalents. The same platform can be used for the comparative evaluation of different enzymes and enzyme cocktails. The sensitivity and reliability of the platform was evaluated by measuring the saccharification of stems from lignin modified tobacco plants, and the results of automated and manual analyses compared.
Conclusions: The automated assay systems are sensitive, robust and reliable. The system can reliably detect differences in the saccharification of plant tissues, and is able to process large number of samples with a minimum amount of human intervention. The automated system uncovered significant increases in the digestibility of certain lignin modified lines in a manner compatible with known effects of lignin modification on cell wall properties. We conclude that this automated assay platform is of sufficient sensitivity and reliability to undertake the screening of the large populations of plants necessary for mutant identification and genetic association studies.