Background: Infants born prematurely are highly vulnerable to infections and also exhibit a high susceptibility to organ damage due to inflammation.
Methods: To investigate homeostatic immune control early in life, we used advanced multiparameter flow cytometry to compare responses to multiple Toll-like receptor (TLR) ligands in single cells and mononuclear cell populations in term neonates versus preterm neonates born before 29 weeks of gestation.
Results: Preterm neonates had globally attenuated TLR-stimulated interleukin (IL)-6, interferon-α, and, to a lesser extent, tumor necrosis factor-α responses but demonstrated relative preservation of anti-inflammatory IL-10 responses in monocytes and dendritic cell subtypes. Remarkably, preterm neonates were also profoundly deficient in the common IL-12 and IL-23 cytokines' p40 subunit, which is critical for immunity against a wide variety of microbial pathogens in mice. Consistent with the increased susceptibility to infections resulting from the lack of IL-12/IL-23 in human newborns, significantly lower serum p40 concentrations were observed at birth in infants who developed early-onset sepsis.
Conclusion: To our knowledge, this study is the first detailed analysis of multiple TLR function in neonates born extremely premature. Although attenuation of proinflammatory pathways may protect against tissue-damaging immunity early in life, this previously unrecognized p40 immune deficiency appears to result in considerably increased susceptibility to infection in human preterm newborns.