Do the costs and benefits of fungal endophyte symbiosis vary with light availability?

New Phytol. 2010 Nov;188(3):824-34. doi: 10.1111/j.1469-8137.2010.03428.x. Epub 2010 Sep 6.

Abstract

• Here, we examined whether fungal endophytes modulated host plant responses to light availability. First, we conducted a literature review to evaluate whether natural frequencies of endophyte symbiosis in grasses from shaded habitats were higher than frequencies in grasses occupying more diverse light environments. Then, in a glasshouse experiment, we assessed how four levels of light and the presence of endophyte symbioses affected the growth of six grass species. • In our literature survey, endophytes were more commonly present in grasses restricted to shaded habitats than in grasses from diverse light environments. • In the glasshouse, endophyte symbioses did not mediate plant growth in response to light availability. However, in the host grass, Agrostis perennans, symbiotic plants produced 53% more inflorescences than nonsymbiotic plants at the highest level of shade. In addition, under high shade, symbiotic Poa autumnalis invested more in specific leaf area than symbiont-free plants. Finally, shade increased the density of the endophyte in leaf tissues across all six grass species. • Our results highlight the potential for symbiosis to alter the plasticity of host physiological traits, demonstrate a novel benefit of endophyte symbiosis under shade stress for one host species, and show a positive association between shade-restricted grass species and fungal endophytes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Darkness
  • Fungi*
  • Inflorescence / growth & development*
  • Plant Leaves / growth & development*
  • Poaceae / growth & development*
  • Sunlight*
  • Symbiosis / physiology*