Toll-like receptors play a critical role in innate immunity by detecting invading pathogens. The ability of TLRs to engage different intracellular signaling molecules and cross-talk with other regulatory pathways is an important factor in shaping the type, magnitude, and duration of the inflammatory response. The present review will cover the fundamental signaling pathways utilized by TLRs and how these pathways regulate the innate immune response to pathogens.
Abbreviations: TLR, Toll-like receptor; PRR, pattern recognition receptor; PAMP, pathogen-associated molecular pattern; LPS, lipopolysaccharide; APC, antigen-presenting cell; IL, interleukin; TIR, Toll/IL-1R homology; MyD88, myeloid differentiation factor 88; IFN, interferon; TRIF, TIR-domain-containing adapter-inducing interferon-β; IRAK, IL-1R-associated kinase; TAK1, TGF-β-activated kinase; TAB1, TAK1-binding protein; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; MAPK, mitogen-activated protein kinase; NLR, NOD-like receptors; LRR, leucine-rich repeats; DC, dendritic cell; PI3K, phosphoinositide 3-kinases; GSK3, glycogen synthase kinase-3; mTOR, mammalian target of rapamycin; DAF, decay-accelerating factor; IKK, IκB kinase; IRF, interferon regulatory factors; TBK1, TANK-binding kinase 1; CARD, caspase activation and recruitment domain; PYD, pyrin N-terminal homology domain; ATF, activating transcription factor; and PTEN, phosphatase and tensin homolog.