Efforts toward deciphering the complexity of the tumor specific proteome by profiling immune responses generated against tumor associated antigens (TAAs) holds great promise for predicting the presence of cancer long before the development of clinical symptoms. The immune system is capable of sensing aberrant expression of certain cellular components involved in tumorigenesis and the resultant autoantibody response provides insights to the targets that are responsible for eliciting immunogenicity to these cellular components. Analysis of the cancer-specific humoral immune response has led to panels of biomarkers that are specific and sensitive biomarkers of disease. Using multianalyte-based in vitro analytical discovery platforms which can be easily adapted into clinical diagnostic screening tests, body fluids such as serum, plasma saliva, or urine can be interrogated to detect autoantibodies against natural or recombinant antigens, which may possess etiologic significance to cancer. Non-invasive screening tests exhibiting high specificity and sensitivity to detect early stage cancer in the heterogeneous population of cancer patients potentially have the greatest impact in decreasing mortality rates. Overall, this review summarizes different experimental approaches in the development of diagnostic screening tests for the early detection of cancer and their implementation in the development of clinical multianalyte biomarker assays.