Background: Aedes aegypti is one of the most important mosquito vectors of human disease. The development of spatial models for Ae. aegypti provides a promising start toward model-guided vector control and risk assessment, but this will only be possible if models make reliable predictions. The reliability of model predictions is affected by specific sources of uncertainty in the model.
Methodology/principal findings: This study quantifies uncertainties in the predicted mosquito population dynamics at the community level (a cluster of 612 houses) and the individual-house level based on Skeeter Buster, a spatial model of Ae. aegypti, for the city of Iquitos, Peru. The study considers two types of uncertainty: 1) uncertainty in the estimates of 67 parameters that describe mosquito biology and life history, and 2) uncertainty due to environmental and demographic stochasticity. Our results show that for pupal density and for female adult density at the community level, respectively, the 95% prediction confidence interval ranges from 1000 to 3000 and from 700 to 5,000 individuals. The two parameters contributing most to the uncertainties in predicted population densities at both individual-house and community levels are the female adult survival rate and a coefficient determining weight loss due to energy used in metabolism at the larval stage (i.e. metabolic weight loss). Compared to parametric uncertainty, stochastic uncertainty is relatively low for population density predictions at the community level (less than 5% of the overall uncertainty) but is substantially higher for predictions at the individual-house level (larger than 40% of the overall uncertainty). Uncertainty in mosquito spatial dispersal has little effect on population density predictions at the community level but is important for the prediction of spatial clustering at the individual-house level.
Conclusion/significance: This is the first systematic uncertainty analysis of a detailed Ae. aegypti population dynamics model and provides an approach for identifying those parameters for which more accurate estimates would improve model predictions.