Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.