The effects of CO₂ enrichment on various ecophysiological parameters of tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers were tested. T. hemprichii, collected from a seagrass bed in Xincun Bay, Hainan island of Southern China, was cultured at 4 CO₂ (aq) concentrations in flow-through seawater aquaria bubbled with CO₂ . CO₂ enrichment considerably enhanced the relative maximum electron transport rate (RETR(max) ) and minimum saturating irradiance (E(k) ) of T. hemprichii. Leaf growth rate of CO₂ -enriched plants was significantly higher than that in unenriched treatment. Nonstructural carbohydrates (NSC) of T. hemprichii, especially in belowground tissues, increased strongly with elevated CO₂ (aq), suggesting a translocation of photosynthate from aboveground to belowground tissues. Carbon content in belowground tissues showed a similar response with NSC, while in aboveground tissues, carbon content was not affected by CO₂ treatments. In contrast, with increasing CO₂ (aq), nitrogen content in aboveground tissues markedly decreased, but nitrogen content in belowground was nearly constant. Carbon: nitrogen ratio in both tissues were obviously enhanced by increasing CO₂ (aq). Thus, these results indicate that T. hemprichii may respond positively to CO₂ -induced acidification of the coastal ocean. Moreover, the CO₂ -stimulated improvement of photosynthesis and NSC content may partially offset negative effects of severe environmental disturbance such as underwater light reduction.
© 2010 Institute of Botany, Chinese Academy of Sciences.