We describe a simple method for preparing multimetallic nanoparticles by in situ decomposition of the corresponding Prussian blue analogue, which is adsorbed on carbon black. The example involves the AuNi(0.5)Fe core of the Pt(ML)/Au(1)Ni(0.5)Fe core-shell electrocatalyst for the oxygen reduction reaction. The core contains 3-5 surface atomic layers of Au, which play an essential role in determining the activity and stability of the catalyst. The Pt(ML)/AuNi(0.5)Fe electrocatalyst exhibited Pt mass and specific activities of 1.38 A/mg(Pt) and 1.12 × 10(-3) A/cm(2)(Pt), respectively, both of which are several times higher than those of commercial Pt/C catalysts. Its all-noble-metal mass activity (0.18 A/mg(Pt,Au)) is higher than or comparable to those of commercial samples. Stability tests showed an insignificant loss in activity after 15,000 triangular-potential cycles. We ascribe the high activity and stability of the Pt(ML)/AuNi(0.5)Fe electrocatalyst to its hierarchical structural properties, the Pt-core interaction, and the high electrochemical stability of the gold shell that precludes exposure to the electrolyte of the relatively active inner-core materials.