Integrative modeling of the cardiac ventricular myocyte

Wiley Interdiscip Rev Syst Biol Med. 2011 Jul-Aug;3(4):392-413. doi: 10.1002/wsbm.122. Epub 2010 Sep 23.

Abstract

Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. WIREs Syst Biol Med 2011 3 392-413 DOI: 10.1002/wsbm.122

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Electrophysiologic Techniques, Cardiac
  • Humans
  • Models, Biological*
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / physiology*
  • Ventricular Function*