Low levels of reactive oxygen species (ROS) modulate signaling pathways required for human sperm activation, but high levels impair sperm function, leading to infertility. Peroxiredoxins (PRDXs) are enzymes with a dual role as ROS scavengers and modulators of ROS-dependent signaling. The present study aimed to characterize PRDXs in human spermatozoa and possible modifications resulting from hydrogen peroxide (H(2)O(2)). We found PRDX1, PRDX4, PRDX5, and PRDX6 in both seminal plasma and spermatozoa. Using immunocytochemistry, we demonstrated that these PRDXs are differentially localized in the head, acrosome, mitochondrial sheath, and flagellum. These observations were confirmed by immunoblotting using cytosolic, Triton-soluble and -insoluble, and head and flagella sperm fractions. PRDXs are dose-dependently modified by H(2)O(2), as seen by the formation of disulfide bridges and high-molecular-mass complexes. This first study, to our knowledge, on PRDXs in human spermatozoa indicates that PRDX1, PRDX4, PRDX5, and PRDX6 are modified when spermatozoa are challenged with H(2)O(2). This suggests that PRDXs may protect these cells at high levels of H(2)O(2) but could also control H(2)O(2) levels within different cell compartments so that normal sperm activation can occur.