Waterborne polymer nanocomposites containing carbon nanotubes, clay platelets, laponite disks and other spherical/nonspherical nanofillers have been the focus of many recent investigations. The miniemulsion polymerization has proved to be a powerful technique to create new hybrid waterborne nanocomposites with enhanced properties. It is necessary to understand how the nanofiller shape/size and its compatibility with the phases affects the equilibrium morphology of the polymer nanoparticle to control the morphology and the properties of the resulting polymeric dispersions. With the aid of Monte Carlo simulations, the equilibrium morphology of hybrid monomer nanodroplets in the presence of nanofillers with different characteristics was obtained. A series of morphology maps depending on the nanofiller compatibility with the monomer and water phases and its shape have been obtained. These new maps may help to design and determine the required conditions to synthesize innovative waterborne polymer nanocomposites with specific morphologies through miniemulsion polymerization.
Copyright © 2010 Elsevier Inc. All rights reserved.