Purpose of review: Stem cell therapy for cardiac disease may be facing two major problems nowadays: although vasculogenesis likely occurs as a result of cell therapy, its clinical applications are limited and significant, integrated cardiomyogenesis has not demonstratively been shown to occur, even in the experimental setting, with any other source than embryonic or other pluripotent stem cells.
Recent findings: In this article, we highlight several factors that will need to be optimized if we are to achieve clinically effective cardiomyogenesis, such as the identification of optimal stem cell populations, and the ideal time and methods for cell transplantation. So far, educated attempts at achieving transplanted stem cell-induced myogenesis have largely failed outside of the embryonic stem cell realm, and we present the rationale for also considering acellular techniques, which may enhance the potential of endogenous progenitor populations.
Summary: In today's cardiovascular field, once a cardiomyocyte is lost it is lost for good, without any form of direct therapeutic option. For these reasons, cell therapy justifies our continued attention and efforts, and may constitute the holy grail of cardiovascular therapeutics.