Vesicular acetylcholine transporter (VAChT; TC 2.A.1.2.13) mediates storage of acetylcholine (ACh) by synaptic vesicles. A three-dimensional homology model of VAChT is available, but the binding sites for ACh and the allosteric inhibitor (-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol) are unknown. In previous work, mutations of invariant W331 in the lumenal beginning of transmembrane helix VIII (TM VIII) of rat VAChT led to as much as ninefold loss in equilibrium affinity for ACh and no loss in affinity for vesamicol. The current work investigates the effects of additional mutations in and around W331 and the nearby lumenal end of the substrate transport channel. Mutants of human VAChT were expressed in the PC12(A123.7) cell line and characterized using radiolabeled ligands and filtration assays for binding and transport. Properties of a new and a repeat mutation in W331 are consistent with the original observations. Of 16 additional mutations in 13 other residues (Y60 in the beginning of lumenal Loop I/II, F231 in the lumenal end of TM V, W315, M316, K317, in the lumenal end of TM VII, M320, A321, W325, A330 in lumenal Loop VII/VIII, A334 in the lumenal beginning of TM VIII, and C388, C391, F392 in the lumenal beginning of TM X), only A334F impairs binding. This mutation decreases ACh and vesamicol equilibrium binding affinities by 14- and 4-fold, respectively. The current results, combined with previous results, demonstrate existence of a spatial cluster of residues close to vesicular lumen that decreases affinity for ACh and/or vesamicol when the cluster is mutated. The cluster is composed of invariant W331, highly conserved A334, and invariant F335 in TM VIII and invariant C391 in TM X. Different models for the locations of the ACh and vesamicol binding sites relative to this cluster are discussed.
© 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.