Rhabdomyosarcomas are soft tissue sarcomas of mesenchymal origin. Unlike rhabdomyosarcomas observed in paediatric patients which typically respond well to chemotherapeutic treatment, adults generally present with pleomorphic rhabdomyosarcomas that are typically associated with poor prognosis. Therefore, understanding the molecular biology that gives rise to pleomorphic rhabdomyosarcomas is critical. In this issue of The Journal of Pathology, Doyle and colleagues have generated elegant tissue-specific Cre/loxP-dependent mouse models that mimic pleomorphic rhabdomyosarcoma development in humans. In this report, the authors employed KRas(G12V)-expressing mouse models that concomitantly either express mutant p53 (p53R172H) or have deleted the p53 gene. Mice that express mutant p53 have decreased survival with development of aggressive metastases as compared to mice that have simply lost wild-type p53. The data presented herein provide the first in vivo evidence that in rhabdomyosarcomas, expression of mutant p53 results in a more aggressive p53R172H-dependent gain-of-function phenotype.
Copyright 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.