Background: The knowledge of both potential distribution and habitat suitability is fundamental in spreading species to inform in advance management and conservation planning. After a severe decline in the past decades, the griffon vulture (Gyps fulvus) is now spreading its breeding range towards the northwest in Spain and Europe. Because of its key ecological function, anticipated spatial knowledge is required to inform appropriately both vulture and ecosystem management.
Methodology/findings: Here we used maximum entropy (Maxent) models to determine the habitat suitability of potential and current breeding distribution of the griffon vulture using presence-only data (N = 124 colonies) in north-western Spain. The most relevant ecological factors shaping this habitat suitability were also identified. The resulting model had a high predictive performance and was able to predict species' historical distribution. 7.5% (approximately 1,850 km(2)) of the study area resulted to be suitable breeding habitat, most of which (approximately 70%) is already occupied by the species. Cliff availability and livestock density, especially of sheep and goats, around 10 km of the colonies were the fundamental factors determining breeding habitat suitability for this species.
Conclusions/significance: Griffon vultures could still spread 50-60 km towards the west, increasing their breeding range in 1,782 km(2). According to our results, 7.22% of the area suitable for griffon vulture will be affected by wind farms, so our results could help to better plan wind farm locations. The approach here developed could be useful to inform management of reintroductions and recovery programmes currently being implemented for both the griffon vulture and other threatened vulture species.