The convergence of chemistry, biology, and materials science has paved the way to the emergence of hybrid nanobuilding blocks that incorporate the highly selective recognition properties of biomolecules, with the tailorable functional capabilities of inorganic molecules. In this work, we describe for the first time the decoration of concanavalin A (Con A), a protein with the ability to recognize sugars and form glycoconjugates, with Os(II) redox-active complexes. This strategy enabled the construction of electroactive biosupramolecular materials whose redox potentials could be easily modulated through the facile molecular modification of the electroactive inorganic complexes. Small-angle X-ray scattering (SAXS), steady-state fluorescence, surface plasmon resonance (SPR) spectroscopy, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), and differential-pulsed (DPV) and cyclic voltammetry (CV) were used to characterize the structural and functional features of the synthesized biohybrid building blocks as well as their respective supramolecular assemblies built up on gold electrodes. By harnessing the electroactive and carbohydrate-recognition properties of these tailor-made biohybrid building blocks, we were able to integrate glucose oxidase (GOx) onto gold electrodes via sugar-lectin interactions. The redox activity of the Os-modified Con A interlayer allowed the electronic connection between the multilayered GOx assemblies and the metal electrode as evidenced by the well-defined bioelectrocatalytic response exhibited by the biomolecular assemblies in the presence of the glucose in solution. We consider that this approach based on the spontaneous formation of redox-active biosupramolecular assemblies driven by recognition processes can be of practical relevance for the facile design of biosensors, as well as for the construction of new multifunctional bioelectrochemical systems.