Bone marrow mesenchymal cells (MSCs) have attracted increasing research interest due to their possible use as support cells for nerve tissue-engineering approaches. We developed a novel design of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid) (PLGA)-based neural scaffold included with autologous MSCs. The graft was used as an alternative to nerve autografts for bridging 50-mm-long gaps in dog sciatic nerve, and the repair outcome at 6 months after nerve grafting was evaluated by a combination of electrophysiological assessment, FluoroGold retrograde tracing, and histological investigation to regenerated nerve tissue and reinnervated target muscle. The experimental results indicated that introduction of autologous MSCs to the chitosan/PLGA-based neural scaffold promoted sciatic nerve regeneration and functional recovery, demonstrating significant efficacy that was, to a certain degree, close to that by nerve autografting, a gold standard for treating large peripheral nerve gaps, and better than that by grafting with the chitosan/PLGA-based scaffold alone.