Highly accurate inverse consistent registration: a robust approach

Neuroimage. 2010 Dec;53(4):1181-96. doi: 10.1016/j.neuroimage.2010.07.020. Epub 2010 Jul 14.

Abstract

The registration of images is a task that is at the core of many applications in computer vision. In computational neuroimaging where the automated segmentation of brain structures is frequently used to quantify change, a highly accurate registration is necessary for motion correction of images taken in the same session, or across time in longitudinal studies where changes in the images can be expected. This paper, inspired by Nestares and Heeger (2000), presents a method based on robust statistics to register images in the presence of differences, such as jaw movement, differential MR distortions and true anatomical change. The approach we present guarantees inverse consistency (symmetry), can deal with different intensity scales and automatically estimates a sensitivity parameter to detect outlier regions in the images. The resulting registrations are highly accurate due to their ability to ignore outlier regions and show superior robustness with respect to noise, to intensity scaling and outliers when compared to state-of-the-art registration tools such as FLIRT (in FSL) or the coregistration tool in SPM.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain / anatomy & histology*
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Models, Theoretical*