Genetic variation plays a substantial role in variation in strength, but the underlying mechanisms remain poorly understood. The objective of the present study was to examine the mechanisms underlying variation in muscle mass, a predictor of strength, between LG/J and SM/J strains, which are the inbred progeny of mice selected, respectively, for high and low body weight. We measured weight of five hindlimb muscles in LG/J and SM/J males and females, in F(1) and F(2) intercrosses, and in an advanced intercross (AI), F(34), between the two. F(2) mice were genotyped using 162 SNPs throughout the genome; F(34) mice were genotyped at 3,015 SNPs. A twofold difference in muscle mass between the LG/J and SM/J mouse strains was observed. Integrated genome-wide association analysis in the combined population of F(2) and AI identified 22 quantitative trait loci (QTL; genome-wide P < 0.05) affecting muscle weight on Chr 2 (2 QTL), 4, 5, 6 (7 QTL), 7 (4 QTL), 8 (4 QTL), and 11 (3 QTL). The LG/J allele conferred greater muscle weight in all cases. The 1.5-LOD QTL support intervals ranged between 0.3 and 13.4 Mb (median 3.7 Mb) restricting the list of candidates to between 5 and 97 genes. Selection for body weight segregated the alleles affecting skeletal muscle, the most abundant tissue in the body. Combination of analyses in an F(2) and AI was an effective strategy to detect and refine the QTL in a genome-wide manner. The achieved resolution facilitates further elucidation of the underlying genetic mechanisms affecting muscle mass.