We applied Horse Liver Alcohol Dehydrogenase (HLADH) to the enantioselective synthesis of six (2S)-2-arylpropanols, useful intermediates in the synthesis of Profens. The influence of substrate structure and reaction conditions on yields and enantioselectivity were investigated. The high yields and high enantioselectivity towards the (S)-enantiomer obtained in the bioreduction of 2-arylpropionic aldehydes, clearly indicate the achievement of a DKR process through a combination of an enzyme-catalyzed kinetic reduction with a chemical base-catalyzed racemization of the unreacted aldehydes. The racemization step is represented by the keto-enol equilibrium of the aldehyde and can be controlled by modulating pH and reaction conditions.