Endothelium and regulation of coagulation

Diabetes Care. 1991 Feb;14(2):160-6. doi: 10.2337/diacare.14.2.160.

Abstract

Endothelial cells form the luminal vascular surface and thus have a central role in the regulation of coagulation. One important way in which endothelial cells control the clotting system is by regulating the expression of binding sites for anticoagulant and procoagulant factors on the cell surface. In the quiescent state, endothelial cells maintain blood fluidity by promoting the activity of numerous anticoagulant pathways, including the protein C/protein S pathway. After activation, as can be brought about by cytokines, the balance of endothelial properties can be tipped to favor clot formation through coordinated induction of procoagulant and suppression of anticoagulant mechanisms. Tumor necrosis factor suppresses the endothelial anticoagulant cofactor thrombomodulin and induces expression of the procoagulant cofactor tissue factor. Working in concert, these changes can allow fibrin formation to proceed in an inflamed focus but maintain blood fluidity in the surrounding area of normal vasculature. Recent studies suggest that similar changes in endothelial coagulant properties can be induced by advanced glycosylation end products, proteins modified by glucose that accumulate in the vasculature at a rapid rate in diabetic subjects, indicating the potential relevance of these mechanisms in diabetic vascular disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Blood Coagulation*
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / physiology*
  • Fibrin / physiology
  • Homeostasis
  • Humans
  • Tumor Necrosis Factor-alpha / pharmacology

Substances

  • Tumor Necrosis Factor-alpha
  • Fibrin