The cardiac-enriched isoform of acetyl-CoA carboxylase (ACCbeta) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACCbeta activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid beta-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACCbeta promoter activity via AMPK activation. A human ACCbeta promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes+/-a NRF-1 expression construct. NRF-1 overexpression decreased ACCbeta gene promoter activity by 71+/-4.6% (p<0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACCbeta was abolished with a pPIIbeta-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACCbeta promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACCbeta gene promoter. Here NRF-1 blunted USF1-dependent induction of ACCbeta promoter activity by 58+/-7.5% (p<0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55+/-6.2% (p<0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACCbeta gene promoter in the mammalian heart. Our data extends AMPK regulation of ACCbeta to the transcriptional level.
Copyright 2010 Elsevier Inc. All rights reserved.