Background: Metastases cause most cancer-related deaths. We investigated the use of hypoxia-selective cytotoxins as adjuvants to radiotherapy in the control of metastatic tumour growth.
Methods: The NLCQ-1, RB6145 and tirapazamine were assessed against the spontaneously metastasising KHT model. Subcutaneous KHT tumours (250 mm(3)) were irradiated with 25 Gy (single fraction) to control primary growth. Equitoxic drug treatments (NLCQ-1 (10 mg kg(-1)) once daily; RB6145 (75 mg kg(-1)) and tirapazamine (13 mg kg(-1)) twice daily) were administered 3-6 days post-radiotherapy when hypoxic cells were evident in lung micrometastases. Mice were culled when 50% of controls exhibited detrimental signs of lung metastases.
Results: In total, 95% of control mice presented with lung disease. This was significantly reduced by NLCQ-1 (33%; P=0.0002) and RB6145 (60%; P=0.02). Semi-quantitative grading of lung disease revealed a significant improvement with all treatments, with NLCQ-1 proving most efficacious (median grades: control, 4; NLCQ, 0 (P<0.0001); RB6145, 1 (P<0.001), tirapazamine, 3 (P=0.007)). Positron emission tomography (PET) was evaluated as a non-invasive means of assessing metastatic development. Primary and metastatic KHT tumours showed robust uptake of [(18)F]fluorodeoxyglucose ([(18)F]FDG). Metastatic burden discernable by [(18)F]FDG PET correlated well with macroscopic and histological lung analysis.
Conclusion: The hypoxia-selective cytotoxin NLCQ-1 controls metastatic disease and may be a successful adjuvant to radiotherapy in the clinical setting.