A kinetic study of the decomposition of the cubic perovskite-type oxide Ba(x)Sr(1-x)Co(0.8)Fe(0.2)O(3-delta) (BSCF) (x = 0.1 and 0.5)

Phys Chem Chem Phys. 2010 Sep 21;12(35):10320-8. doi: 10.1039/c0cp00004c. Epub 2010 Jun 24.

Abstract

The decomposition of the cubic perovskite-type oxide Ba(x)Sr(1-x)Co(0.8)Fe(0.2)O(3-delta) (BSCF) into hexagonal and cubic perovskite-type phases has been examined by means of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED) and X-Ray Diffraction (XRD). SEM and TEM measurements reveal that the new hexagonal phase grows predominantly at the grain boundaries of BSCF ceramics and that the cation composition of the newly formed hexagonal phase differs from that of the starting material. An orientational relationship between the hexagonal and the parent cubic phase was also observed. By means of ex situ XRD the phase fraction of the hexagonal phase was determined as a function of annealing time. A kinetic analysis of the data, based on Avrami-type kinetics, indicates that the decomposition is independent of the initial A-site composition, and the obtained reaction order supports the conclusion that the hexagonal phase grows at the grain boundaries in dense ceramic samples.