Background: Abnormal interactions between red blood cells, leukocytes and endothelial cells play a critical role in the occurrence of the painful vaso-occlusive crises associated with sickle cell disease. We investigated the interaction between circulating leukocytes and red blood cells which could lead to aggregate formation, enhancing the incidence of vaso-occlusive crises.
Design and methods: Blood samples from patients with sickle cell disease (n=25) and healthy subjects (n=5) were analyzed by imaging and classical flow cytometry after density gradient separation. The identity of the cells in the peripheral blood mononuclear cell layer was determined using antibodies directed specifically against white (anti-CD45) or red (anti-glycophorin A) blood cells.
Results: Aggregates between red blood cells and peripheral blood mononuclear cells were visualized in whole blood from patients with sickle cell disease. The aggregation rate was 10-fold higher in these patients than in control subjects. Both mature red blood cells and reticulocytes were involved in these aggregates through their interaction with mononuclear cells, mainly with monocytes. The size of the aggregates was variable, with one mononuclear cell binding to one, two or several red blood cells. Erythroid Lu/basal cell adhesion molecule and α(4)β(1) integrin were involved in aggregate formation. The aggregation rate was lower in patients treated with hydroxycarbamide than in untreated patients.
Conclusions: Our study gives visual evidence of the existence of circulating red blood cell-peripheral blood mononuclear cell aggregates in patients with sickle cell disease and shows that these aggregates are decreased during hydroxycarbamide treatment. Our results strongly suggest that erythroid Lu/basal cell adhesion molecule proteins are implicated in these aggregates through their interaction with α(4)β(1) integrin on peripheral blood mononuclear cells.