Porphyromonas gingivalis, a Gram-negative oral anaerobe, is associated with periodontal diseases that, in some form, affect up to 80% of the U.S. population. The organism is highly proteolytic, and noncatalytic adhesin domains of the major proteases, gingipains, are involved in bacterium-host interactions. Recently, we showed that gingipain adhesin peptide A44 hijacks the host's clathrin-dependent endocytosis system, allowing the peptide and whole bacteria to be internalized by epithelial cells. In the present study, we found by cell fractionation assays and confocal microscopy that peptide A44 translocated to host mitochondria. Cell viability assays and quantitative real-time PCR showed that the peptide interacted with the cell death machinery by triggering upregulation of antiapoptotic factors bcl-2 and bcl-XL and prevented staurosporine-induced apoptosis for up to 12 h. We confirmed these findings with Western blot analyses of caspase-9 activation in time course experiments with staurosporine. Finally, we verified a similar antiapoptotic effect for P. gingivalis, showing for the first time that the organism manipulated mitochondrial functions during the first hours of infection, thus resisting host cell clearance by apoptosis of infected cells. This mechanism may enable the bacteria to persist in the protected cellular environment until the next step in pathogenesis, progression or resolution of infection.