A number of genes that function in the terpenoid indole alkaloids (TIAs) biosynthesis pathway have been identified in Catharanthus roseus. Except for the geraniol 10-hydroxylase (G10H) gene, which encodes a cytochrome P450 monooxygenase, several of these genes are up-regulated by ORCA3, a jasmonate-responsive APETALA2 (AP2)-domain transcript factor. In this study, the G10H gene was transformed independently, or co-transformed with ORCA3 into C. roseus, using Agrobacterium rhizogenes MSU440. Hairy root clones expressing the G10H gene alone, or both the G10H and ORCA3 genes, were obtained. Alkaloid accumulation level analyses showed that all transgenic clones accumulated more catharanthine, with the highest accumulation level in the transgenic clone OG12 (6.5-fold higher than that of the non-expression clone). Following treatment with ABA, accumulation of catharanthine reached 1.96 mg/g DW in the transgenic clone OG12. The expression levels of TIAs biosynthesis genes in transgenic and non-transgenic clones were also investigated.