A multi-criteria weight of evidence approach for deriving ecological benchmarks for radioactive substances

J Radiol Prot. 2010 Jun;30(2):215-33. doi: 10.1088/0952-4746/30/2/S02. Epub 2010 Jun 9.

Abstract

Dose rate benchmarks are required in the tiered approaches used to screen out benign exposure scenarios in radiological ecological risk assessment. Such screening benchmarks, namely the predicted no-effect dose rates (PNEDR), have been derived by applying, as far as possible, the European guidance developed for chemicals. To derive the ecosystem level (or generic) PNEDR, radiotoxicity EDR(10) data (dose rates giving a 10% effect in comparison with the control) were used to fit a species sensitivity distribution (SSD) and estimate the HDR(5) (the hazardous dose rate affecting 5% of species with a 10% effect). Then, a multi-criteria approach was developed to justify using an assessment factor (AF) to apply to the HDR(5) for estimating a PNEDR value. Several different statistical data treatments were considered which all gave reasonably similar results. The suggested generic screening value of 10 microGy h(-1) (incremental dose rate) was derived using the lowest available EDR(10) value per species, an unweighted SSD, and an AF of 2 applied to the estimated HDR(5). Consideration was also given to deriving screening benchmark values for organism groups but this was not thought to be currently appropriate due to few relevant data being currently available.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Animals
  • Benchmarking
  • Ecosystem
  • Environmental Exposure / prevention & control*
  • Environmental Exposure / standards*
  • Radiation Dosage
  • Radiation Injuries / prevention & control*
  • Radiation Injuries / veterinary*
  • Radiation Monitoring / standards*
  • Radioisotopes / analysis*

Substances

  • Radioisotopes