Photodynamic therapy (PDT) is considered one efficient treatment against retinoblastoma. The specificity of a photosensitizer and its penetration into cancerous cells are crucial for achieving tumor necrosis. The selection of photosensitizers such as porphyrin derivatives by tumor cells thus depends to a large extent on their ability to interact with the biological membrane. In this work, we have studied by surface pressure measurements and fluorescence spectroscopy the interaction between three newly synthesized dendrimeric phenylporphyrins and monolayers or liposomes with increasing cholesterol content mimicking the retinoblastoma cell membrane. The morphology of phospholipid-cholesterol-porphyrin mixed monolayers was also analyzed by Brewster angle microscopy. The results showed that the increase in cholesterol content in the model membranes had almost no effect on the effective penetration of the drugs into the lipid layers. Conversely, the chemical structure of the glycodendrimeric phenylporphyrins and the presence of sugar moieties especially appeared to play a crucial role. Although the non-glycoconjugated phenylporphyrin penetrated to a greater extent than glycodendrimeric ones into the liposome membrane, this could be achieved at a high lipid/porphyrin ratio only. Glycodendrimeric porphyrins exhibited improved surface properties compared to the non-glycoconjugated derivative and could penetrate into lipid layers even at low lipid/porphyrin ratios and high surface pressures. Our work highlights the role in the passive diffusion of porphyrins into biomimetic cancer cell membranes, of complex interactions among the lipid molecules, the sugar moieties, and the hydrophobic macrocycle of the porphyrins.