Most second-generation antipsychotics (SGAs) induce metabolic disturbances, but large differences exist in the degree to which individual patients develop these. Little is known about genetic factors associated with differential liability. Cross-sectional studies suggested an association between polymorphisms in 5,10-methylenetetraydrofolate reductase (MTHFR) and metabolic syndrome in patients with schizophrenia. This study aimed to assess whether the C677T (rs1801133) or A1298C (rs1801131) polymorphism in the MTHFR gene predict differential evolution of metabolic parameters over the course of a 3-month follow-up period after initiation of an SGA. One hundred and four patients with schizophrenia initiated on a SGA were measured at baseline, 6 weeks and 3 months. MTHFR A1298C, but not C677T, genotype predicted pos-baseline increases in weight [beta=2.5, standard error (SE)=0.92, P=0.006], waist circumference (beta=2.0, SE=1.0, P=0.050), fasting glucose (beta=2.8, SE=1.2, P=0.024) and glucose at 120 min during the Oral Glucose Tolerance Test (beta=10.7, SE=4.5, P=0.018) following a de novo metabolic challenge with a specific SGA. A1298C allele carriers consistently displayed the most unfavorable evolution of metabolic parameters. Thus, MTHFR A1298C genotype may explain part of the individual liability to metabolic disturbances in patients with schizophrenia.