The disease progression with West Nile virus (WNV) infection in humans leads to meningitis or encephalitis and may cause death, particularly among elderly and immunocompromised individuals. Passive immunity using immunoglobulins has shown efficacy in treating some patients with WNV infection, which makes the development of human anti-WNV antibodies significant. The goal of this study was to construct a Fab-specific phage display library against WNV, and to identify and select clones with neutralizing activities. Total RNA was extracted from peripheral blood lymphocytes (PBLs) of two immunized individuals, and RT-PCR was used to amplify the Fab fragments containing the heavy (V(H)) and light (V(L)) chains. The amplified genes were sequentially cloned into the recombinant antibody expression vector pComb3-H, and the Fab-specific phage display library was packaged with helper phage VCS-M13. Five rounds of panning were carried out with WNV E protein domain III, and then binding antibodies were selected by ELISA. Antigen binding specificity, complementarity determining region (CDR) sequence of V(H) and V(L), and neutralizing activity against WNV were analyzed in vitro and in vivo. Eight Fab monoclonal antibodies recognized E protein domain III from a library of 7×10(7) clones/ml. Of the eight, one (Fab 1), exhibited significant neutralizing activity, and completely blocked 100 pfu WNV infection in Vero cells at a concentration 160 μg/ml. In contrast, Fab 13 and Fab 25, showed weaker neutralizing activities, and modestly blocked 100 pfu WNV infections at concentrations of 320 μg/ml and 160 μg/ml, respectively. However, animal studies showed that Fab 1 failed to protect mice from death at the concentration of 160μg/ml indicating that the neutralizing potential of an antibody in vivo is determined by the strength of binding and the abundance of its epitope for the virion.