Implication of TAp73 in the p53-independent pathway of Puma induction and Puma-dependent apoptosis in primary cortical neurons

J Neurochem. 2010 Aug;114(3):772-83. doi: 10.1111/j.1471-4159.2010.06804.x. Epub 2010 May 8.

Abstract

Puma (p53 up-regulated modulator of apoptosis) is a BH3-only protein member of the Bcl-2 family that controls apoptosis by regulating the release of pro-apoptotic factors from mitochondria. Previously, we reported that sodium arsenite (NaAsO(2)) induces Puma-dependent apoptosis in cortical neurons in a p53-independent manner. The following evidence shows that p53-independent Puma activation by NaAsO(2) is mediated by the p53-related protein TAp73: (i) NaAsO(2) causes TAp73alpha accumulation and increases p53-independent expression of p73 target genes; (ii) two p53 response elements in the Puma promoter are required for NaAsO(2)-mediated activation of a Puma reporter construct; (iii) expression of the inhibitory DeltaNp73alpha and DeltaNp73beta isoforms decreases NaAsO(2)-mediated induction of Puma and other p53-family target genes in a p53-null background; (iv) DeltaNp73alpha and DeltaNp73beta expression protects the neurons from NaAsO(2)-dependent apoptosis. Interestingly, although ER stressors also induce p53-independent, Puma-dependent apoptosis, they do not increase TAp73 expression while NaAsO(2) does not induce notable endoplasmic reticulum (ER) stress. In contrast, DNA damaging agents, okadaic acid, and H(2)O(2) all induce apoptosis in a strictly Puma- and p53-dependent manner. Hence, the pivotal position of Puma as mediator of apoptosis in cortical neurons is because of the availability of at least three independent signalling pathways that ensure its activation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Apoptosis / physiology*
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / physiology*
  • Cerebral Cortex / cytology
  • Cerebral Cortex / physiology*
  • Mice
  • Mice, Knockout
  • Nerve Degeneration / genetics
  • Nerve Degeneration / metabolism*
  • Nerve Degeneration / physiopathology
  • Neurons / cytology*
  • Neurons / physiology
  • Nuclear Proteins / genetics
  • Nuclear Proteins / physiology*
  • Signal Transduction / genetics
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / physiology
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / physiology*

Substances

  • Apoptosis Regulatory Proteins
  • Nuclear Proteins
  • PUMA protein, mouse
  • Tumor Suppressor Protein p53
  • Tumor Suppressor Proteins
  • delta Np73, mouse