A large proportion of the phenotypic variation in blood pressure (BP) appears to be inherited as a polygenic trait. This study examined the association between 12 single nucleotide polymorphisms (SNPs) in the guanine nucleotide binding protein beta polypeptide 3 (GNB3) and adducin 1 alpha (ADD1) genes and systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP. A total of 3,142 individuals from 636 families were recruited from rural north China, and 2,746 met the eligibility criteria for analysis. BP measurements were obtained using a random-zero sphygmomanometer. Genetic variants were determined using SNPlex assays on an automated DNA Sequencer. A mixed linear model was used to estimate the association between each SNP and BP level. After Bonferroni correction, marker rs4963516 of the GNB3 gene remained significantly associated with DBP (corrected P values = 0.006, 0.007 and 0.002 for co-dominant, additive, and recessive models, respectively) and MAP (corrected P values = 0.02, 0.049, and 0.005, respectively). Compared to carriers of the major A allele, CC homozygotes had higher mean DBP (75.81 +/- 0.62 vs. 73.46 +/- 0.25 mmHg, P = 0.0002) and MAP (91.87 +/- 0.68 vs. 89.42 +/- 0.28 mmHg, P = 0.0004) after adjusting for covariates of age, gender, BMI, study site, and room temperature during BP measurement. In summary, these data support a role for the GNB3 gene in BP regulation in the Chinese population. Future studies aimed at replicating these novel findings are warranted.