Purpose: In TFK-1 and EGI-1 cholangiocarcinoma cell lines, zoledronic acid (ZOL) determines an S-phase block without apoptosis. Here, we investigated the occurrence of apoptosis stigmata when ZOL is associated to the BH3-mimetic ABT-737.
Methods: In EGI-1 and TFK-1 cholangiocarcinoma cell lines untreated or treated with ABT-737 alone or in combination with ZOL, the pro-survival protein's pattern (BCL-2, BCL-XL, MCL-1, HSP72, HSP27) was investigated by biochemical criteria along with the occurrence of mitochondrial damage evaluated by cytofluorimetric analysis using a cationic dye.
Results: ABT-737 induced growth inhibition and significantly affected the colony-forming ability of both EGI-1 and TFK-1 cells. However, activated PARP-1 or/and caspase-3 cleavage (apoptosis markers) were detected only at the highest ABT-737 concentrations used. Combined treatment showed synergistic effect by converting the predominant cytostatic effect of ZOL into a cytotoxic one as shown by striking increment of mitochondrial harmed cells along with PARP-1 activation and caspase-3 cleavage.
Conclusion: The lack of apoptosis following ZOL treatment in these cholangiocarcinoma cell lines appears to be multifactorial and could be ascribed to the large constitutive expression of pro-survival proteins. The efficacy of ZOL treatment requires a concomitant unleashing of apoptosis using a selective BH3-mimetic as ABT-737. The rational targeting of specific components of the apoptotic pathway may appear a useful approach to improve the treatment of refractory or relapsed cholangiocarcinoma. Combined treatment could be further explored in in vivo tumor model of cholangiocarcinoma.