The selection landscape of malaria parasites

Science. 2010 May 14;328(5980):866-71. doi: 10.1126/science.1185410.

Abstract

Malaria parasites have to survive and transmit within a highly selective and ever-changing host environment. Because immunity to malaria is nonsterilizing and builds up slowly through repeated infections, commonly the parasite invades a host that is immunologically and physiologically different from its previous host. During the course of infection, the parasite must also keep pace with changes in host immune responses and red-blood-cell physiology. Here, we describe the "selection landscape" of the most virulent of the human malaria parasites, Plasmodium falciparum, and the adaptive mechanisms it uses to navigate through that landscape. Taking a cost-benefit view of parasite fitness, we consider the evolutionary outcomes of the most important forces of selection operating on the parasite, namely immunity, host death, drugs, mosquito availability, and coinfection. Given the huge potential for malaria parasite evolution in the context of the recently renewed effort to eradicate malaria, a deeper understanding of P. falciparum adaptation is essential.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Antigenic Variation
  • Antigens, Protozoan / immunology
  • Antimalarials / pharmacology
  • Culicidae / parasitology
  • Drug Resistance
  • Genes, Protozoan
  • Genetic Fitness
  • Genome, Protozoan
  • Humans
  • Immune Evasion
  • Insect Vectors / parasitology
  • Malaria, Falciparum / drug therapy
  • Malaria, Falciparum / parasitology*
  • Malaria, Falciparum / prevention & control
  • Malaria, Falciparum / transmission
  • Plasmodium falciparum / drug effects
  • Plasmodium falciparum / genetics*
  • Plasmodium falciparum / immunology
  • Plasmodium falciparum / physiology*
  • Protozoan Proteins / genetics
  • Protozoan Proteins / immunology
  • Selection, Genetic*

Substances

  • Antigens, Protozoan
  • Antimalarials
  • Protozoan Proteins