Direct fabrication of zero- and one-dimensional metal nanocrystals by thermally assisted electromigration

ACS Nano. 2010 Jun 22;4(6):2999-3004. doi: 10.1021/nn901674p.

Abstract

Zero- and one-dimensional metal nanocrystals were successfully fabricated with accurate control in size, shape, and position on semiconductor surfaces by using a novel in situ fabrication method of the nanocrystal with a biasing tungsten tip in transmission electron microscopy. The dominant mechanism of nanocrystal formation was identified mainly as local Joule heating-assisted electromigration through the direct observation of formation and growth processes of the nanocrystal. This method was applied to extracting metal atoms with an exceedingly faster growth rate ( approximately 10(5) atoms/s) from a metal-oxide thin film to form a metal nanocrystal with any desired size and position. By real-time observation of the microstructure and concurrent electrical measurements, it was found that the nanostructure formation can be completely controlled into various shapes such as zero-dimensional nanodots and one-dimensional nanowires/nanorods.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Electroplating / methods*
  • Hot Temperature
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Metals / chemistry*
  • Microscopy, Electron, Transmission / methods*
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances
  • Metals