Endoglin is a transforming growth factor-beta coreceptor with a crucial role in angiogenesis. A soluble form of endoglin is present in the circulation, but the role of soluble endoglin (sEndoglin) is poorly understood. In addition, the endoglin shedding mechanism is not known. Therefore, we examined the role of sEndoglin in tumor angiogenesis and the mechanism by which the extracellular domain of endoglin is released from the membrane.In colorectal cancer specimens, we observed high endothelial endoglin protein expression, accompanied with slightly lower sEndoglin levels in the circulation, compared with healthy controls. In vitro analysis using endothelial sprouting assays revealed that sEndoglin reduced spontaneous and vascular endothelial growth factor-induced endothelial sprouting. Human umbilical vascular endothelial cells were found to secrete high levels of sEndoglin. Endoglin shedding was inhibited by matrix metalloproteinase (MMP) inhibitors and MMP-14 short hairpin RNA, indicating MMP-14 as the major endoglin shedding protease. Coexpression of endoglin and membrane-bound MMP-14 led to a strong increase in sEndoglin levels. Endoglin shedding required a direct interaction between endoglin and membrane-localized MMP-14. Using cleavage site mutants, we determined that MMP-14 cleaved endoglin at a site in close proximity to the transmembrane domain. Taken together, this study shows that MMP-14 mediates endoglin shedding, which may regulate the angiogenic potential of endothelial cells in the (colorectal) tumor microenvironment.
(c)2010 AACR.