Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles

Mol Biol Cell. 2010 Jun 15;21(12):2034-44. doi: 10.1091/mbc.e10-02-0158. Epub 2010 Apr 21.

Abstract

Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / drug effects
  • Adipocytes / metabolism
  • Animals
  • Cystinyl Aminopeptidase / chemistry
  • Cystinyl Aminopeptidase / metabolism*
  • Endocytosis / drug effects
  • Endosomes / drug effects*
  • Endosomes / metabolism*
  • Exocytosis / drug effects
  • GTPase-Activating Proteins / metabolism
  • Gene Knockdown Techniques
  • Glucose Transporter Type 4 / metabolism*
  • Insulin / pharmacology*
  • Intracellular Space / drug effects
  • Intracellular Space / metabolism
  • Mice
  • Protein Structure, Tertiary
  • Protein Transport / drug effects

Substances

  • GTPase-Activating Proteins
  • Glucose Transporter Type 4
  • Insulin
  • TBC1D4 protein, human
  • Cystinyl Aminopeptidase
  • leucyl-cystinyl aminopeptidase