Variation in the seasonal patterns of innate and adaptive immunity in the red-eared slider (Trachemys scripta)

J Exp Biol. 2010 May;213(Pt 9):1477-83. doi: 10.1242/jeb.037770.

Abstract

The primary function of the immune system is to protect the organism from invading pathogens. In vertebrates, this has resulted in a multifaceted system comprised of both innate and adaptive components. The immune system of all jawed vertebrates is complex, but unlike the endothermic vertebrates, relatively little is known about the functioning of the ectothermic vertebrate immune system, especially the reptilian system. Because turtles are long-lived ectotherms, factors such as temperature and age may affect their immune response, but comprehensive studies are lacking. We investigated variation in immune responses of adult male and female red-eared sliders (Trachemys scripta) across the entire active season. We characterized seasonal variation in innate, cell-mediated and humoral components via bactericidal capacity of plasma, delayed-type hypersensitivity and total immunoglobulin levels, respectively. Results indicate that all immune measures varied significantly across the active season, but each measure had a different pattern of variation. Interestingly, temperature alone does not explain the observed seasonal variation. Immune measures did not vary between males and females, but immunoglobulin levels did vary with age. This study demonstrates the highly dynamic nature of the reptilian immune system, and provides information on how biotic and abiotic factors influence the immune system of a long-lived ectotherm.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptive Immunity
  • Animals
  • Female
  • Immunity, Innate
  • Male
  • Seasons
  • Turtles / immunology*