One-dimensional Pr(3+)-doped CaTiO(3) microfibers were fabricated by a simple and cost-effective electronspinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), quantum efficiency (QE), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. Under ultraviolet excitation and low-voltage electron beams (1-3 kV) excitation, the CaTiO(3):x Pr(3+) samples show the red emission at 612 nm, corresponding to (1)D(2)-(3)H(4) transition of Pr(3+). The luminescence intensity, quantum efficiency, and the lifetime have been studied as a function of the doping concentration of Pr(3+) in the CaTiO(3) samples.